香港理工大学创新塔。
2020年11月24日4时30分,我国在中国文昌航天发射场,用长征五号遥五运载火箭成功发射探月工程嫦娥五号探测器。南京航空航天大学的超声电机、着陆缓冲技术等技术团队助力“嫦五”飞天。
“发射的场景很壮观,我们团队在现场见证了嫦娥五号成功飞天,大家都很激动。”11月24日中午,记者拨通中国科学院院士、南京航空航天大学教授赵淳生电话时,他还沉浸在发射成功的喜悦中。
此前,赵淳生院士团队的超声电机已成功应用在嫦娥四号和嫦娥三号巡视器上,主要负责红外成像光谱仪内定标板的驱动与控制,功能类似光谱仪“舱门的开关”。
与传统电机相比,超声电机具有响应快、精度高、噪声小、无电磁干扰等优点。嫦娥五号的工作环境对超声电机的精度和环境都有了更严苛的要求。
此次应用在嫦娥五号探测器上的超声电机,主要用于驱动光谱仪上的二维指向机构,“这个机构会驱动镜片转动,将月壤上不同位置的光线反射进光谱仪,协助探测器上的仪器分析月球表面的物质。”南航航空学院教授李华峰告诉记者,他们设计的超声电机定位的角度精度可达0.1度。
从2015年起,研究团队就开始研发用在嫦娥五号探测器上的超声电机,进行了大量的自检和可靠性确认等工作。“前期嫦娥任务中超声电机的工作温度范围在-30℃至60℃,而在嫦娥五号中的使用温度区间扩大到-55℃至120℃,超声电机使用环境的变化很大,这对材料和驱动控制提出了更大的挑战。”李华峰说,超声电机需要用胶粘剂将压电陶瓷片和金属定子牢牢粘贴在一起,但前期使用的胶粘剂在高温下会变软,因此团队反复验证以提高材料性能,并改进电路结构设计,确保电机在高温下也能正常工作。
“通俗地说,就是通过特别设计的缓冲机构,以及缓冲机构内填充的吸能材料,让着陆器在着陆过程中,有一定缓冲能力,从而让它稳稳地‘站在月表。”南航研究团队科研人员表示,此前,该团队着陆缓冲系统相关研究成果已成功应用于嫦娥三号、四号月球探测器,确保了嫦娥三号、四号探测器在月面的成功着陆。在嫦娥五号和火星探测器着陆缓冲装置的研制中,这一成果也提供了系统的设计方法及试验验证手段。
此外,南航航天学院空间结构与机构课题组瞄准未来深空星表多点位、多任务探测的技术需求,积极开展缓冲、行走一体化星表着陆器的研究工作,取得了一系列成果,可以在保证缓冲性能的前提下,以着陆器的体积、质量、复杂度的最小增量为代价,扩展调姿和行走的能力,试图解决传统着陆器在月球、火星等表面着陆后不能移动、需要借助巡视器进行较大范围探测的问题。
中国探月工程嫦娥五号探测器成功落月并完成核心关键任务——月面自动采样封装。在中国首次月面采样返回的探测任务中,香港理工大学(以下简称“理大”)科研团队研发的表取采样装置助力嫦娥五号在月球表面“挖土”成功,闪耀香港科研团队在国家重要科研项目中的又一次高光。
2020年12月8日理大介绍,嫦娥五号采样方式包括钻具钻取和机械臂表取,理大科研团队承担的正是表取采样系统的研发。
表取采样指的是利用机械臂在月面进行多点采样,机械臂由中国空间技术研究院制造,采样执行装置则由理大工业及系统工程学系讲座教授兼副系主任容启亮率领20多名香港科研人员研发制造。
容启亮及其团队研发的表取采样执行装置附着在嫦娥五号的着陆器上,整套装置由超过400件工件组合而成,包括采样器甲、采样器乙、初级封装装置和近摄相机。采样器甲和采样器乙分别用来挖取松散和黏性的月球土壤,初级封装装置是表取样本的暂存器,近摄相机则发挥识别样本和视像导航等作用。
嫦娥五号探测器成功着陆。图片中国军网
容啟亮向记者介绍,纵观全球探月历程,嫦娥五号采样任务实现了采样方式和采样地点的两大突破,对科研发展无疑有着至关重要的作用。他表示,嫦娥五号创造性地完成了月面自动表取采样并封装。在采样地点上,嫦娥五号没有选择曾经被采样的地点,而是开拓了一处受风化影响较小、月壤没有被采集过的“处女地”。
从2012年完成原理样机研发到向国家交付正样件,再到嫦娥五号成功完成表取采样,容启亮形容“这些年走过的每一步都是挑战”。单以表取采样执行装置为例,这一装置是在月球面向太阳的地方运作,月面温度高达110摄氏度,所以容启亮团队设计的系统必须能够克服极高温、宇宙射线等极端环境并保持样本稳定。
容启亮说,香港是一座开放型的城市,科学家有机会接触各种前沿的科学理念,但仅仅有好的想法、没有雄厚的科研实力是远远不够的,国家给予香港科研人才承担重大科研项目的机会,鼓励香港科研人员融入国家发展,更是促进了香港在国家科研发展中承担重要角色。
◎ 来源| 综合科技日报、新华每日电讯