蔡世英
在高中數学习题中,能不给图就尽量不给图,需要解题者有基本的构图能力,于是,在各级的考试中对构图能力的要求就相应提高了,例如“构造角相等”的问题,若已知一个角,构造角平分线可得到角相等,这个问题确实简单,但是若需要构造角的顶点,使得两个角相等,则这个问题就不简单了,为了说明这个问题,本文采撷两例,以饗读者.
例1 (2017年泉州质检)如图1,在直角坐标系中,抛物线y=-x2+bx+2与x轴交于A、B两点,与直线y=2x交于点M(1,m).
(1)求m,b的值;
(2)已知点N,点M关于原点O对称,现将线段MN沿y轴向上平移s(s>0)个单位长度.若线段MN与抛物线有两个不同的公共点,试求s的取值范围;
(3)利用尺规作图,在该抛物线上作出点G,使得∠AGO=∠BGO,并简要说明理由.(保留作图痕迹)
(原答案)解:(1)略;(2)略;
(3)如图2,在x轴上取一点P(-2,0),以P为圆心,OP为半径作圆,⊙P与抛物线的交点,即是所求作的点G(图中的G与G′)endprint