栏目分类:
子分类:
返回
文库吧用户登录
快速导航关闭
当前搜索
当前分类
子分类
实用工具
热门搜索
文库吧 > 学术 > 学生必读 > 考试周刊

变量为媒方程为桥巧解函数综合问题

变量为媒方程为桥巧解函数综合问题

摘 要:應用方程思想解函数的综合问题,要明确变量,以变量为媒,巧设未知数,以方程为桥,建立等量关系,巧解函数综合问题,从而提高学生的数学核心素养。文章通过具体例题谈方程思想在解函数解析式、切线、极值点、最值和零点问题中的应用,从“解题点拨”和“素养提升”角度作分析和总结。

关键词:方程思想;函数综合问题;核心素养

方程思想不仅是最基本的也是最重要的数学思想之一,它是从对问题的数量关系分析入手,将问题中的条件转化为数学模型(这种模型可以是方程、不等式或方程与不等式的混合组成),然后通过解方程(组)或不等式(组)来使问题获得解决的思想。利用方程思想解决数学问题时,首先要具备正确列出方程的能力,其次要具备用方程思想解题的意识。

总之,函数图象的交点、函数零点、方程的根三者之间可互相转化,解题的宗旨就是函数与方程的思想即方程的根可转化为函数零点、函数图象的交点,反之函数零点、函数图象交点个数问题也可转化为方程根的问题。函数与方程思想在一定的条件下是可以相互转化的,是相辅相成的。函数思想重在对问题进行动态的研究,方程思想则是在动中求静,研究运动中的等量关系。应用方程思想解函数的综合问题,要明确变量,以变量为媒,巧设未知数,以方程为桥,建立等量关系,巧解函数综合问题,从而提高学生的数学核心素养。

参考文献:

[1]李明振.数学方法与解题研究[M].上海:上海科学教育出版社,2013.

[2]史宁中.高中数学课程标准修订中的关键问题[J].数学教育学报,2018(1).

作者简介:饶智荣,福建省龙岩市,福建省连城县第一中学。

转载请注明:文章转载自 www.wk8.com.cn
本文地址:https://www.wk8.com.cn/xueshu/552829.html
我们一直用心在做
关于我们 文章归档 网站地图 联系我们

版权所有 (c)2021-2022 wk8.com.cn

ICP备案号:晋ICP备2021003244-6号