栏目分类:
子分类:
返回
文库吧用户登录
快速导航关闭
当前搜索
当前分类
子分类
实用工具
热门搜索
文库吧 > 学术 > 学术期刊 > 科技创新导报

改进的带有时滞的耦合神经网络的稳定性分析

改进的带有时滞的耦合神经网络的稳定性分析

张晋芳

摘 要:本文探討了一类带有时变时滞的递归神经网络的稳定性分析问题.我们以改进的神经网络为模型,对其激活函数的限制条件加以修改;研究了当网络中出现时变时滞时,通过构造新的李雅普诺夫函数,应用线性矩阵不等式的方法,得出了关于平衡点的全局渐近稳定的充分条件,我们的稳定性结果相对先前的文献在保守性上有很大的改进。最后给出具体例子验证结论的有效性。

关键词:递归神经网络 全局稳定性 时变时滞 线性矩阵不等式

中图分类号:TP183 文献标识码:A 文章编号:1674-098X(2017)08(a)-0161-02

大家都知道,带时滞的耦合神经网络在诸多领域有着广泛的应用,例如模式识别,图像处理,联想记忆和优化问题等。近年来,许多学者证明推导出了关于全局渐近稳定性和全局指数稳定性的有效结果。不过值得一提的是,这些文章是基于以下假设的:模型中所涉及到的时间延迟是恒定的延迟或是其中的延迟是连续可微的[1],并且激活函数要求是单调的或可微的[2]。然而,在许多情况下时间延迟频繁发生,并以不规则的方式变化。有时它们可能不是连续可微的,在这种情况下,这些结果的应用是受到限制的。本文章的目的就是为了扩充这些结果[1-2],对具有时变时滞递归神经网络模型进行了全局渐近稳定性的分析,提出了一种新的标准条件,模型中的时滞是变化的,并且不需要考虑它的可微性。最后给出了一个具体的例子来验证本结论的有效性。

1 模型描述及预备知识

3 结语

在本章内容中,我们研究了具有时滞的递归神经网络的平衡点的全局稳定性问题。首先我们给出了一个满足稳定性条件的引理。然后构造李雅普诺夫函数,利用线性矩阵不等式,我们给出了相应的判别条件,并给出了激活函数满足特定条件时的一些结论,通过数值例子验证了所得结论。

参考文献

[1]Ensari. T, Arik. S. New results for robust stability of dynamical neural networks with discrete time delays. Expert Systems with Applications 2010(37):5925-5930.

[2]Liu. L.P, Han. Z.Z, Li. W.L. Global stability analysis of interval neural networks with discrete and distributed delays of neutral type. Expert Systems with Applications 2009(36):7328-7331.

[3]Chen T, and Wang L. Power-rate global stability of dynamical systems with unbounded time-varying delays [J].IEEE Transactions on Circuits and Systems, 2007,54(8):705-709.

转载请注明:文章转载自 www.wk8.com.cn
本文地址:https://www.wk8.com.cn/xueshu/61119.html
我们一直用心在做
关于我们 文章归档 网站地图 联系我们

版权所有 (c)2021-2022 wk8.com.cn

ICP备案号:晋ICP备2021003244-6号