杨子潺
摘 要:该文以高中物理作为研究对象,探讨数学知识在高中物理解题中运用及相关问题。首先结合数学知识的功能对其进行了简要概述;主要介绍了在物理教学中渗透数学的理念;分析了诸如函数、几何法、图像法、微元法的应用等。希望能够通过该文初步论述可以引起更多关注与更为广泛交流,从而为该方面的理论研究工作与解题实践提供一些有价值的信息,以供参考。
关键词:数学知识 高中物理 解题 运用
中图分类号:G420 文献标识码:A 文章编号:1674-098X(2016)10(c)-0148-02
在西方的科学常识中,数学是基础性的学科,它包括代数与几何;探讨数学知识在高中物理解题中的应用,主要是通过对数学中的一些函数、方程、几何、极值法等基本,但处于核心地位的内容加以应用,使其能够在高中物理学中对规律的描述、物理概念的理解、公式的推导等,能够快速、有效加以把握;从而形成一种新的解题思路,更为简化地将复杂问题通过数学方法加以解决,提高解题效率等。以下就从这个角度对数学知识在高中物理解题中的运用展开具体讨论。
要在高中物理解题中运用数学知识,就需要先在物理教学中对数学概念进行一些渗透,比如,类似定义的名词,如:向量既是大小、方向方面的量,又能够遵守三角形的不变法则,当换到物理中时发现,需要在四边形法则之下,对其进行讨论,所以,向量、标量之区分,就是一个显著的示例;另一方面,抛物线在两种学科中均存在,但在物理中要考虑空气阻力问题,而在数学已经拥有了这方面的了解,通过区分差异,在学习中可以更好理解相在物理概念等;另外,数学是物理的基础,而物理中也应用到了好多数学方法;所以,应该加强数学知识的运用。
1 数学知识在高中物理解题中的运用
高中物理非常奇妙,而对于数学知识的应用却有助于解决诸多比较难解的问题,或者简化诸多抽象而复杂的物理难题,比如:通过函数可以让问题更为简化、易于求解,通过图像可以让抽象转变为形象,然后,通过具体的分析得到最终的答案,理解其中的奥秘;再如,几何图形的运用就可以让物理运动更为形象的在几何思路中获得认知等,以下就从这些方面进行具体说明。
1.1 函数的运用
举例:若在某两地(A、B),有2个人(甲、乙)相向而行,B-乙比A-甲出发早6 min,当二者同时见面时,B-乙再多行110 m,见面后速度相同,共同前行,A-甲到达A地B地7 min,B-乙到达A地10 min,问题是二人速度、两地距离各是多少?
如果直接根据物理学知识进行分析,似乎比较复杂,但是,若能够尝试换为数学思路,就可以设想一个求解方程,然后,通过换元方法,将较难的问题简单化,然后,通过方程来加以解决。具体分析过程是,先设x为二者见面时的地点到A地的距离,那么,B=x+110,甲速度=x+110/7、乙速度=x/10;所以可以得到方程x/x+110/7=x+110/x/9-6,对其进行简化就可以得到另外一个方程7x/x+110-9(x+110)/x+6=0;那么,设y=x/x+110,那么,就可以得到公式7y2+6y-10=0问题就变为简单的二元一次方程,求解即可得到答案。
1.2 几何法的运用
在应用几何法方面,比如:物理学中对带电粒子在有界磁场方面的运动问题的分析、物理变力问题的分析,往往可以利用几何学中的一些基本原理,如:三角形原理、作图方法等,这样就可以让问题更为直观得到分析;而且运用几何学解决物理学中的问题,诸如:对称点性质、两点间直线最短、相似三角形、全等三角形等,此类基本性的原理应用较多,而且通常的解题经验也表明最为一般的原理最为常用,且能够达到较好效果;另一方面,在高中物理中,会遇到电学、力学更为复杂的问题,但若通过圆的相关知识,不仅可以深入分析,也能够让圆周运动之类的原理得到很好发挥,以拓宽解决问题的思路,提高解题的技巧与水平。
1.3 图像法的运用
图像法针对的是抽象问题的直观化,以及解决。因为对于高中物理而言,逻辑思维并不是很强,遇到抽象的题目,转换能力一般较差,因此,若能够引入数学中的图像法,那么,就能够将抽象题目转换为直观图像,再通过数学思维打开解题思路;从而达到以图像的识别为途径达到解决问题的目的(尤其是要关注图像的绘制问题)。
比如:若从定义方面看,图像所表达的物理,主要是通过纵轴-交点,对量-函数进行表述;以运动学为例,v-t、s-t,二者图像差异较少,混淆的可能性最大,所以,需要认真分析、仔细辨别;另一方面,遇到诸如点、面积、斜率之类的问题,也需要进行重点分析,如线——过程中的规律、变化过程,而v-t图像中的线——倾斜直线是匀速直线运动,斜率是横纵坐标物理量变化率等;所以,在解题时,应该辨别物理量大小求解问题,定性并对快慢进行分析;再如,s-t图像斜率——速度大小;v-t图像斜率——加速大小。
再如,坐标、图线之间所构成的面积问题,在高中物理例题中往往也会遇到,它们往往存在对应关系,根据上面所说的图像,继续分析,若v-t图像、横轴间面积,对应于位移大小,那么,在正位移就在t上方,负位移就在其下方,就可以得到f-t图像面积与冲量的对应关系等。
从当前的教学经验可以认识到比较重要的几个高中物理图像,比如:电场线分布与交变电流、磁感线分布图(电学)、上面所提到的v-t、s-t(运动学)、还有牛顿定律中的a-1/m、a-f图(实验图像)等。
1.4 微元法的运用
所谓的微元法指的是通过微分理念进行有效分析;具体来看,就是通过细分法,让物理过程、物体成为单元,并进行适当单位单元的选取,然后达到具体的针对性研究目的,即找到相关变化规则,它的解题思路也非常简单;特点在于精细,而需要用到模型处理,所以,是一种思路简单,但解决起来应用的知识较为复杂的方法。
具体来看,在解题中,要求对微元的多样性有一个清晰认识,它可以是质量、面积、体积、线段、圆弧等任何对象,而且其基础在于整体对象的完整性;另一方面,正如上面所说,需要用到模型,即:微元模型化,通过电荷、匀速转动、质点此类视角,或者物理规律等,建立微元与物体之间的关联,从而达到最终的求解目的。另外,当得到一个微元答案之后,就可以在其他微元中进行应用,其中会用到诸多关系,比如:对称、近似极限、矢量等,当完成答案累加后,即可以求得最终的完整答案等。
2 结语
总之,在现代学术研究中,跨学科研究已经成为了比较常见的现象,尤其是作为所有科学的基础性学科——数学得到了最为广泛应用;通过上文分析可以看出,数学知识在高中物理解题中的应用有具体的关联、也有明解的方法,以及应用的必然性。所以,建议在以后的高中物理教学中,应该尽可能多研究一些数学方法,透过一种新的思路打开对物理教学的创造之门,从而进一步提升解题速度与效率,并使高中学生从中能够领略并学会对多种新思维的理解、分析、掌握与应用等。
参考文献
[1]郭新华.分类讨论思想在高中物理解题中的应用研究[J].中学物理:高中版,2014,32(19):37-38.
[2]陈燕.探讨高中物理解题过程中创造性思维方法的训练[J].中学物理,2014,32(7):69-70.
[3]李建军.高中物理解题的几种常用的解题技巧分析[J].中学物理,2015(11):96.
[4]肖丽英.“微元法”在高中物理解题中的应用探究[J].中学物理,2014,32(2):90-91.
[5]刘厅.高中物理解题中如何运用图象法[J].中学物理,2016,34(8):91-92.
[6]張志祥.浅议高中物理解题思维[J].中学物理,2014,32(9):91-92.